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Abstract Diffuse optical imaging (DOI) is emerging as a new functional imaging

modality that can be used for breast cancer screening. Due to the ill-posed inverse problem

for DOI image reconstruction, regularization is essential to remedy such a drawback. In our

previous study, we have successfully implemented edge-preserving regularization into

image reconstruction algorithm for improving the reconstructed images. In this study, we

incorporate additional anatomical image, which can be obtained from other imaging

modality such as mammography or magnetic resonance imaging, although showing no

tumor information, into edge-preserving regularization for further improving the recon-

structed images. Reconstruction results show that the quality of reconstructed images can

be significantly improved.
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1 Introduction

Breast cancer is a common disease that occurs in women worldwide. According to the

report from World Health Organization (2015), breast cancer is common leading causes of

death to women. Therefore, it is demanding for a screening or diagnostic tool that enables

to detect breast cancer effectively. Diffuse optical imaging (DOI) is emerging as a tech-

nique that aims for the purpose (Fantini and Sassaroli 2012; Durduran et al. 2012). DOI

uses near infrared light to illuminate the breast, and reconstructs the distribution of

chromophore concentrations (hemoglobin, water, and lipid) from the detected optical

signals, which are in turn associated with features that bear diagnostic potential. The

research results show that cancerous tissue is associated with higher hemoglobin and water

concentrations, and a lower lipid concentration with respect to normal breast tissue

(Cerussi et al. 2006; Choe et al. 2009). Moreover, instruments for DOI are comparatively

cost-effective as compared with other instrumentation used conventionally for breast

screening and/or diagnosis, such as X-ray mammography, magnetic resonance imaging

(MRI), and breast ultrasound (US). Unfortunately, tissue scattering intrinsically limits the

spatial resolution of DOI.

Apart from DOI concerned with functional state of breast for cancer detection, mam-

mography, MRI, and breast US have been used primarily for anatomical imaging. X-ray

mammography has been extensively applied in hospitals, because sufficient evidence

shows that mammography screening contributes to substantial reductions in breast cancer

mortality (Tabar et al. 2003); however, it is hampered by false positives and negatives

(Elmore et al. 1998; Huynh et al. 1998), and sensitivity declines significantly with

increasing breast density (Kolb et al. 2002), resulting in a need for providing clinically

viable adjuncts to mammography. Breast MRI is a relatively recent diagnostic tool as an

adjunct to mammography. It has the advantages of providing a three-dimensional view of

breast with high sensitivity in dense breast tissue and, contrast to mammography, using

non-ionizing radiation. The significant disadvantages of MRI include moderate specificity

and high cost for routine screening (Hylton 2005). Breast US examination is also per-

formed as supplemental second-line screening procedure in the population of women with

mammographically dense breast tissue, which has been identified as an independent

marker strongly associated with breast cancer risk (Nothacker et al. 2009). Data inter-

pretation, however, strongly relies on operator’s experience.

Due to the limitation and advantages of varied imaging modalities, combining DOI with

mammography (Li et al. 2003; Fang et al. 2011; Collettini et al. 2012; Michaelsen et al.

2012; Fang et al. 2009; Krishnaswamy et al. 2012), MRI (Zhao et al. 2015; Brooksby et al.

2004; Boverman et al. 2005; Brooksby et al. 2005; Brooksby et al. 2006; Yalavarthy et al.

2007; Azar et al. 2007), or breast US (Chen et al. 2001; Zhu et al. 1999; Zhu and Chen

2003; Zhu et al. 2008) is showing promise for tumor detection by merging complementary

functional and structural information into a single approach. It is anticipated that multi-

modality imaging may contribute to increase the screening/diagnostic effectiveness when

distinct and complementary physiological data are available; and further, anatomical

images can be used as a priori knowledge in the reconstruction algorithm to remedy the ill-

posed inverse problem of DOI, and to improve the reconstructed images. The most

straightforward way to combine a priori structural information into the DOI reconstruction

procedure is to assume that optical property perturbation comes from the region of interest

(ROI) shown in the anatomical image. Under this condition, the image reconstruction is

just limited to the ROI (Chen et al. 2001); besides, regularization parameters that control
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the degree of regularization in the background and tumor, respectively, can be chosen

differently to improve image resolution (Li et al. 2003). Another approach to applying a

priori knowledge of the size and location of the heterogeneity in the reconstruction is to

divide the whole medium into varied types of tissue (lipid, glandular tissue, and tumor),

and each tissue type is assumed homogeneous within the defined regions during recon-

struction. In this way, known as hard prior, the number of unknown in the inverse problem

is greatly reduced (Krishnaswamy et al. 2012; Zhao et al. 2015; Brooksby et al. 2004;

Boverman et al. 2005; Zhu et al. 1999). As being too rigidly enforced in the DOI image

reconstruction process of hard prior, a variant approach, known as soft prior, was proposed

to apply a priori knowledge of breast composition/tissue distributions; for instance, a

Laplacian-type regularization matrix linking locations with similar properties was applied

in the reconstruction to minimize variation within each region (Brooksby et al. 2005;

Brooksby et al. 2006; Yalavarthy et al. 2007). Finally, reconstruction can be performed by

using a finer grid for lesion region and a coarse grid for the background tissue based on

anatomical image, leading to the total number of unknowns the same order of total

measurements, and the inverse problem less ill-posed (Zhu and Chen 2003; Zhu et al.

2008).

In the study we utilize anatomical images and present a modified edge-preserving

regularization (EPR) with incorporation of a priori edge information. In our EPR scheme,

auxiliary variable is introduced to make the manipulation of minimization problem more

efficient (Chen et al. 2012; Chen et al. 2013). The auxiliary variable also plays the role of

discontinuity marker and preserves the sharpness of the reconstructed images. To further

improve the reconstruction computation for clinical trial, we incorporate a priori infor-

mation on edge locations, where available edge locations can be inferred from the

anatomical images obtained from other imaging modalities, such as MRI and mammog-

raphy, even though the structural information shows no tumor size and location. Then, the

edge locations can be used as a guide to expedite the reconstruction by modifying the

discontinuity marker during the reconstruction steps. We use the synthesized data to

validate its effectiveness, and demonstrate that our new method recovers tumor further

accurately and preserves the sharpness of edge better than those obtained by conventional

EPR. Numerical tests are given to show that the new method is a robust algorithm in terms

of the accuracy and availability of edge locations.

The following sections first briefly describe the reconstruction algorithm of DOI; then

introduce the modified EPR scheme incorporating with edge locations as a priori infor-

mation. Finally, synthesized data sets are employed to show the merits of the proposed

scheme.

2 Method

In this study, a model-based optical property reconstruction algorithm is employed. Here,

the optical-property distribution inside the tissue to be imaged is reconstructed iteratively

first by comparing the measured diffusion photon density data and the theoretical pre-

diction based on the forward model, i.e. diffusion equation; and then, the optical properties

(inverse solution) are obtained through a least squares minimization problem in which the

optimization strategy is adopted with edge-preserving regularization due to its ill-posed

nature of the inverse problem.
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2.1 Forward problem in DOI

NIR light transporting in the tissue can be modeled by the diffusion equation (Durduran

et al. 2012):

r � jðrÞrUðr;xÞ � laðrÞ �
ix
c

� �
Uðr;xÞ ¼ �Sðr;xÞ; ð1Þ

where U(r, x) is the photon density at position r when isotropic light source S(r, x) with
modulation frequency x is launched into the tissue, and c is the speed of light in the tissue.

The characteristics of tissue are described by the optical diffusion coefficient j(r) and

absorption coefficients la(r). Moreover, the optical diffusion coefficient j(r) is defined as

jðrÞ ¼ 1

3 laðrÞ þ l0sðrÞ
� � ; ð2Þ

where l0sðrÞ is the reduced scattering coefficient. For image reconstruction, diffusion

equation needs to be solved (forward problem) at each iteration step, i.e., calculating the

photon density for a given set of optical property within the tissue. In this study, the finite

element method (FEM) is applied to Eq. (1) with a Robin (type-III) boundary condition to

solve the forward problem.

2.2 Inverse problem in DOI

The goal of DOI is to estimate the distribution of the optical diffusion and absorption

coefficients in tissue from one-dimensional boundary measurement. This estimation can be

achieved by minimizing the data-model misfit difference between the measured diffusion

photon density data UL around the tissue boundary, and the calculated model data UC from

solving the forward problem with the current estimated optical properties (Chen et al.

2012):

v2 ¼
XNM

i¼1

UC
i � UM

i

� �2
; ð3Þ

where NM is the number of measurement data. Due to nonlinearity with respect to the

optical properties, numerical way of obtaining the inverse solution for minimizing Eq. (3)

is iteratively solving the following equation:

oUC

ola

oUC

oj

� �
Dla
Dj

� �
¼ UM � UC

� 	
; ð4Þ

or simply denoted as JDv = DU, where J is the Jacobian matrix. However, solving Eq. (4)

usually experiences with an ill-posed problem. Therefore, regularization is required to

remedy such a situation. Edge-preserving described in the following is adopted in this

study.

2.2.1 Edge-preserving regularization

In edge-preserving regularization (EPR), the inverse problem in DOI is formulated as

minimization of the objective function composed of a residual term and a regularization
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term into which a potential function u with edge-preserving properties is introduced (Chen

et al. 2012; Chen et al. 2013):

QEpðDvÞ ¼ JDv� DUk k22 þ k2
X
l

X
k

u DlDvð Þk
� �

; ð5Þ

where the index k is in the lexicographical order, the index l may represent the horizontal,

vertical, or diagonal direction, and k is the regularization parameter that balances the

residual term and the regularization term. The potential function u in the regularization

term of the objective function determines the regularization imposed on every value of the

first-order difference DlDv which is used to detect the discontinuities of the update vector

Dv in specific direction l. Due to nonlinearity shown when minimizing Eq. (5), it is proven

that the original objective function Eq. (5) can be transformed into the following objective

function:

Q�
EpðDvÞ ¼ JDv� DUk k22 þ k2

X
l

X
k

blð Þk DlDvð Þ2k þu blð Þk
� �n o

; ð6Þ

where the auxiliary variable b is introduced by half-quadratic regularization capable of

making minimization of Eq. (6) linear with respect to Dv.
A strategy to calculate the update vector Dv for minimizing Eq. (6) is described in the

following. First, Dvn is fixed at iteration step n ? 1, and bn?1 is simply computed using the

expression obtained from minimization of Eq. (6):

bnþ1
l

� 	
k
¼ argmin

ðblÞk
Q�

Ep Dvn; ðblÞk
� 	n o

¼
u0 ðDlDvnÞk
� �
2ðDlDvnÞk

: ð7Þ

Then the new update vector Dvn?1 is the solution obtained from minimization of Eq. (6)

when bn?1 is fixed:

Dvnþ1 ¼ argmin
Dv

Q�
Ep Dvn; bnþ1
� 	n o

¼ JTJ þ k2Dnþ1
Ep


 ��1

JTDU; ð8Þ

where Dnþ1
Ep ¼

P
l

DT
l B

nþ1
l Dl and Bnþ1

l ¼ diag ðbnþ1
l Þk

� �
. Finally, the optical property inside

the tissue is estimated iteratively with solving alternately the update equations, i.e.,

Eqs. (7) and (8), until the stopping criteria being met.

Edge-preserving regularization algorithm presented here is a flexible reconstruction

algorithm. This means that different weighting function u0ðtÞ=2tðt ¼ DlDvnÞ can easily

adopted and used for image reconstruction. For example, a generalized Lorentzian func-

tion, an exponential function, or a generalized total variation function can be incorporated

into edge-preserving regularization algorithm (Chen et al. 2013). In this study, we use a

generalized Lorentzian function as the edge-preserving weighting function

u0ðtÞ
2t

¼ ðc2Þm

ðc2 þ t2Þm ; ð9Þ

where c and m are adjustable parameters to change the behavior of the edge-preserving

weighting function. The use of such a generalized Lorentzian function apart from others is

for its adaptive characteristics and better estimation of absorption-coefficient image con-

cerning functional information derived from the absorption coefficients at multi-wave-

length (Chen et al. 2013).
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2.2.2 Incorporating structural information into edge-preserving regularization

The minimization problem in Eq. (5) seeks the solution that best fits the measured dif-

fusion photon density data and preserves sharp edge in reconstructed images. From other

imaging modality, structural information can be obtained for the objects to be imaged. The

location of known edges obtained from the discontinuities in the structural images can be

employed and incorporated as constraints during the reconstruction computation. For

instance, if specific tissue types such as fatty, fibro-glandular and tumor tissue in the

reconstruction domain are known, then the soft priori approach can be used to improve the

reconstructed images with the help of a Laplacian-type matrix, which links all nodes in a

particular type tissue (Brooksby et al. 2005; Brooksby et al. 2006; Yalavarthy et al. 2007).

In this study, we utilized the a priori edge information derived from discontinuities in the

structural images, and impose it to guide for the minimization of Eq. (5).

In the edge-preserving regularization, its weighting function u0ðtÞ=2tðt ¼ DlDvnÞ is

required to satisfy the condition that it strictly decreases on [0, ??). It has implicitly made

an assumption that a large value of the gradient t corresponds to an edge and preserves such

an edge by assigning a small weight value b. Therefore, when additional structural or edge

information can be obtained from other imaging modality, one can incorporate this a prior

edge information into edge-preserving regularization through modifying the weight value b

calculated by Eq. (7),

bnþ1
l

� 	New
k

¼ wb bnþ1
l

� 	
k
; ð10Þ

during each reconstruction step, where wb controls the degree of weight value b on the

node k. For the node k corresponding to the edge obtained from structural information, wb

is chosen in the range of null and unit for further reducing the weight value b and pre-

serving an edge in the reconstructed image. Otherwise, wb is chosen greater than unit for

increasing the weight value b and smooth the reconstructed image. It is noted that from

Eq. (9) the influence of the structural information can be adjusted by appropriately

selecting the value of wb.

3 Results and discussion

In this section, the proposed image reconstruction algorithm with edge-preserving regu-

larization scheme and incorporated structural information is evaluated through synthesized

optical properties; besides, reconstructions with using edge-preserving regularization

without structural information are also presented as a comparison.

The test phantom is 80 mm in diameter, of which optical properties with la =
0.01 mm-1 and l0s ¼ 1:0 mm�1 are employed for the background medium. NIR illumi-

nation with 20 MHz modulated light and multiple measurement positions are used to

extract (for simulation) or collect (for experimentation) boundary information for image

reconstruction. More specifically, in the simulation and experiments, it is designated 16

equally-spaced NIR illumination positions and also 16 measurement locations around the

circular boundary for out-emitted data to be acquired; and thus it yields a total of 256

amplitude and 256 phase-shift observations for the computation of la- and l0s-image

reconstruction. Finite-element forward solution using a mesh consisting of 4225 nodes and

8192 triangle elements with Robin (type-III) boundary condition is obtained to generate

simulated data. A second mesh with 817 nodes and 1536 triangle elements is generated and
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employed in the inverse problem for image reconstruction. All the reconstructed images

reported here are reconstructed initially from homogeneous optical properties. For all

cases, 30 iterations are used during the inverse computation, and the stopping criterion,

Un�1 � Un
�� ��2= Unk k2\10�3, is employed.

As mentioned above, a generalized Lorentzian function is used as the edge-preserving

weighting function due to its flexibility to change its behavior through the adjustable pa-

rameter c and m, even though varied weighting functions can be employed for the edge-

preserving regularization. Here, the values of c = 0.0025 and m = 1 are adopted in the

proposed edge-preserving weighting function; moreover, the regularization parameter k
presented in the regularization methods controls the ratio of the regularization term relative

to the residual term. For the cases presented here, the regularization parameter

k = 2*max[diag(JTJ)] appears to provide excellent reconstructed optical-property images

from all simulated data.

3.1 Discontinuity marker: the auxiliary variable b in edge-preserving
regularization

In the investigation of incorporating structural information into edge-preserving regular-

ization, to high light the role of the auxiliary variable b in the preservation of edges is

significant. Since its value at each node depends on the presence of an edge through the

weighting function, b can be considered as a discontinuity marker. At each iteration step of

the reconstruction, new discontinuity markers are computed (Eq. 7) and then taken into

account for the computation of new estimation (Eq. 8).

For the illustration of discontinuity markers, an example of reconstruction with syn-

thetic data is first presented. In this simulation, image reconstructions are conducted under

idealized conditions with no measurement noise. The data used in the reconstruction are

Fig. 1 Reconstruction of absorption and reduced scattering images with two-fold contrast level for an
inclusion to the background. a, c are the designated absorption and reduced scattering images, respectively;
and b, d are the corresponding reconstructed ones using edge-preserving regularization, but without
incorporating structural information
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obtained by the forward solution through the finite-element diffusion model with desig-

nated optical-property distribution, i.e. homogeneous background (la = 0.01 mm-1 and

l0s ¼ 1:0 mm�1) embedded with a 10-mm-diameter inclusion, which is 20 mm off the

center of the background. The optical properties of inclusion for both la and l0s are

assigned with two folds of the background, as shown in Fig. 1a, c for the absorption and

reduced scattering coefficients, respectively. As a baseline for comparison, the recon-

structed la and l0s images, through using edge-preserving regularization without incor-

porating any structural information are illustrated in Fig. 1b, d; as shown, the inclusion can

be reconstructed in this simple case. It is noted that the reduced scattering coefficient l0s,
adopted as a reconstruction parameter in an image formation algorithm, is actually

inversely proportional to the diffusion coefficient j (Eq. 2).

Figure 2 shows the evolution of both auxiliary variable and reconstructed absorption

images in the first three iteration steps, where the auxiliary variable distributions are

characterized in grey levels for better visualization. ‘b1’, ‘b2’ and ‘b3’ in Fig. 2 show the

auxiliary variable distribution in the horizontal and two diagonal directions, respectively,

‘b’ is a simple summation of ‘b1’, ‘b2’, and ‘b3’. In the present finite element model an

interior node is surrounded by six neighboring nodes, as shown in the leftmost of Fig. 2,

and thus these three directions are used for calculating the first-order difference of the

current node and the neighboring node DlDv (Eq. 7). It is noted that the auxiliary variable

appears in darker grey near the inclusion boundary or edge due to its smaller weight value

for preserving the edge during the computation, as describe in Sect. 2.2.2.

It can also be observed that all values of auxiliary variable are homogeneous at step 1

(first row of Fig. 2). It is reasonable since they are assigned from the designated values, a

uniformly homogeneous. Then the first absorption image is reconstructed with b uniformly

equal to the assigned value of 1. At step 2, new values of the auxiliary variables are

computed using the first estimation (Eq. 7) and utilized to calculate the new estimation

(Eq. 8), and so on. Note that other initial guesses of auxiliary variable could be used.

However, using a homogeneous initial guesses allows important noise elimination during

Fig. 2 Images of auxiliary variable in the three directions (noted in the direction of 1, 2 and 3), and their
combination (a simple summation). The upper, middle and lower rows, respectively, show the auxiliary
variable images and reconstructed absorption images at the 1st, 2nd, and 3rd iteration steps during the
reconstruction of Fig. 1b
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the first reconstruction step and explains the good results we obtain from the simulated data

even though moderate noise was added.

The role of discontinuity maps played by the auxiliary variables clearly appears in

Fig. 2. At each reconstruction step, discontinuities are introduced into the new estimation.

The new discontinuity maps are computed from this new estimation and then introduced

into the next estimation to generate sharper image. Therefore, when the discontinuity or

edge information could be obtained from the structural image and incorporated into edge-

preserving regularization algorithm, we could anticipate more superior reconstruction

results.

3.2 Reconstruction with a priori information

The edge-preserving regularization incorporating structural information described in Sect. 2

was used to reconstruct images from synthetic data with 3 % Gaussian noise added in this

section. Breast is a mix of adipose (fat) and fibro-glandular tissue. From coronal view of

breast, adipose tissue composes an outer layer that surrounds the fibro-glandular tissue.

Based on this anatomical structure, a two-layered phantom (Brooksby et al. 2005; Brooksby

et al. 2006; Yalavarthy et al. 2007) with an inclusion embedded inside the inner layer (fibro-

glandular) was used to evaluate the ability of this reconstruction technique resolving a more

realistic structure in the simulation of breast imaging. The outer layer (fatty) has optical

property values of la = 0.01 mm-1 and l0s ¼ 1:0 mm�1, and the inclusion (tumor) with

la = 0.04 mm-1 and l0s ¼ 0:89 mm�1, was placed inside the inner layer (fibro-glandular)

having the optical property values of la = 0.02 mm-1 and l0s ¼ 2:0 mm�1, as depicted in

Fig. 3a, c. For the purpose of comparison, Fig. 3b, d show the reconstructed absorption and

reduced scattering images using edge-preserving regularization without structural infor-

mation incorporated. Apparently, the inclusion could be separated from inner layer in

Fig. 3 Reconstruction of absorption and reduced scattering images for a phantom of layered domain with
an inside inclusion. a, c are the designated absorption and reduced scattering images; b, d show the
corresponding reconstructed images using edge-preserving regularization without incorporating structural
information (3 % Gaussian noise added)
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absorption image. However, due to 3 % Gaussian noise added in the synthetic data, the

reconstructed absorption image also presents some artifacts in the inner layer.

Reconstructed images for this two-layered domain case with edge-preserving regular-

ization incorporating structural information are shown in Figs. 4, 5 and 6. Figure 4 pre-

sents images reconstructed with perfect a priori discontinuity or edge information

incorporated into edge-preserving regularization. The perfect a priori edge information

means that the discontinuity between fatty, fibro-glandular, and tumor could be obtained

from structural image without error. In the first case of reconstruction with a priori

information, the simulated structural image is shown in Fig. 4a where the distribution is

equivalent to the Fig. 1a, c. The bright region in Fig. 4c displays the perfect edge corre-

sponding to the discontinuities in the structural image of Fig. 4a. This edge information

could be easily acquired due to homogeneous characteristics of fatty, fibro-glandular, and

tumor region in the simulated structural image. Therefore, we could incorporate this

derived edge information into edge-preserving regularization by reducing the weight value

b relative to this edge position with Eq. (10) at each reconstruction step, where we chose

wb = 0.1. Otherwise, the weight value at the dark region of Fig. 4c is increased with

wb = 1.9. The absorption and reduced scattering images reconstructed with edge-pre-

serving regularization incorporating structural information are shown in Fig. 4b, d,

respectively. As can be seen, Fig. 4b demonstrates a considerable improvement in the

reconstructed absorption image when structural information was invoked. Moreover,

artifacts previously shown in the inner layer when reconstructed with EPR were signifi-

cantly eliminated.

In the second case of reconstruction with a priori information, we considered that the

tumor is even not differentiated from the fibro-glandular in the structural image. The

simulated structural image representing this situation is shown in Fig. 5a, where only fatty

(outer layer) and fibro-glandular (inner layer) are present. Figure 5c shows the edge

Fig. 4 Reconstruction of absorption and reduced scattering images for a phantom of layered domain with
an inside inclusion through edge-preserving regularization incorporating perfect edge information.
a Simulated structural information with an inside tumor, b reconstructed absorption image, c edge
information computed from structural information (given by a), d reconstructed reduced scattering image

 130 Page 10 of 16 L.-Y. Chen et al.

123



information derived from Fig. 5a. Again, during each reconstruction step, the weight value

b at bright region of Fig. 5c is reduced with wb = 0.1 and at dark region is increased with

wb = 1.9. Figure 5b, c present the absorption and reduced scattering images reconstructed

with edge-preserving regularization incorporating this imperfect a priori edge information,

i.e., edge of tumor could not be seen in the structural image and not utilized in the

reconstruction. Clearly presented in the Fig. 5b, artifacts in inner layer had been sup-

pressed as compared to the Fig. 3b and tumor can be reconstructed although a priori

information used in reconstruction only contains edge information that separates the fatty

and fibro-glandular part in structural image.

Fig. 5 Same caption as Fig. 4 except the employed structural image (as a) showing no tumor information

Fig. 6 Same caption as Fig. 4 except the employed imperfect structural image with added Gaussian noise
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In the third case of reconstruction with a priori information, we considered more

practical situation that the structural image obtained from other imaging modality might

contain some noise or variation in the images as displayed in Fig. 6a. Due to this variation

in the structural image, the edge information obtained under this condition is displayed in

Fig. 6c and would not as well as the one shown in Fig. 4c. Also, the weight value b at

bright region of Fig. 6c is reduced with wb = 0.1 and at dark region is increased with

wb = 1.9 during each reconstruction step. Figure 6b, d show the reconstructed absorption

and reduced scattering images with imperfect a priori edge information incorporated. As

compared to the Fig. 4b, d, there is no significant difference in the reconstructed images

regardless of perfect or imperfect a priori edge information used.

3.3 Reconstructions from synthesized data added with varied levels of noise

The reconstruction algorithm described in Sect. 2 are used to reconstruct images from

synthesized data with 1, 3, 5, and 10 % Gaussian distributed noise to see the effect of

different data noise level. The phantom geometry and the optical properties were the same

to the previous section (Fig. 3a, c). Moreover, perfect spatial priors were used when edge-

preserving regularization incorporating structural information.

Figure 7 displays the reconstructed absorption and reduced scattering images using

edge-preserving regularization, without incorporation of structural information, and sim-

ulated data with different level of noise added. Obviously, increasing the data noise level in

the simulated data significantly affects the reconstructed absorption images. Without

structural priors, inclusion in the inner layer still could be reconstructed. However, the

Fig. 7 Demonstration of reconstructed absorption and reduced scattering images using synthesized data
added with varied levels of noise and edge-preserving regularization, without structural image available.
a designated absorption coefficient distribution, reconstructed absorption images from synthesized data
added with b 1 %, c 3 %, d 5 % and e 10 % noise; f designated reduced scattering coefficient distribution,
and reconstructed reduced scattering images from synthesized data added with g 1 %, h 3 %, i 5 % and
j 10 % noise
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shape of the inclusion is distorted notably especially when 5 and 10 % noise added in the

data as present in Fig. 7d, e.

In contrast to Fig. 7, Fig. 8 shows that, with structural priors, increasing the data noise

level in the simulated data did not significantly affect the reconstructed images. Moreover,

with the help of a priori information, the shape of the inclusion in the reconstructed

absorption images is close to the exact one as shown in Fig. 8a. This is due to the reason

that using proper weight value b allows noise or artifact elimination and edge preservation

during the reconstruction, where we increased or reduced the weight value depending on

the edge information derived from structural image.

3.4 Reconstruction from experimental data

In this section, our proposed EPR incorporating structural information was justified using

experimental data. A 50-mm-diameter cylindrical phantom, composed of fat emulsion

suspension (Lipovenoes) as the scattering medium and ink as the absorber, was made with

background optical properties of la = 0.006 mm-1 and l0s ¼ 0:6 mm�1. The 830 nm NIR

light source with the power of 7 mW was used during measurement.

Figure 9a, b display the images reconstructed from the conventional EPR and EPR

incorporating structural information, respectively, with the experimental data collected

from the phantom with an eccentrically located 10-mm-diameter inclusion (12.5 mm off

center along the horizontal axis at 180�) having a 4:1 contrast level with respect to the

background medium. Figure 9c, d illustrate one-dimensional (1D) circular profiles through

the center of the inclusion at radius of 12.5 mm. As demonstrated in Fig. 9b, artifact

around the boundary of l0s image can be reduced when structural information was utilized

into EPR algorithm. Moreover, the shape of the inclusion is preserved as indicated in

Fig. 9d.

Figure 10 demonstrates the reconstruction of two eccentrically located inclusions

having 4:1 contrast level with respect to the background medium. Similar to the previous

Fig. 8 Same caption as Fig. 7 except with structural image available for edge-preserving regularization
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Fig. 9 Reconstruction from experimental data obtained from an eccentrically located inclusion with a
contrast of four for both la and l0s. a, b are the reconstructed l0s and l0s images through using conventional

edge-preserving regularization and edge-preserving regularization with structural information, respectively;
c, d are the 1D circular profiles cutting through the images of a and b

Fig. 10 Same caption as Fig. 9 except reconstruction from experimental data obtained from two
eccentrically located inclusions having a 4:1 contrast level with respect to the background medium
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reconstruction results, artifact around the boundary of reconstructed l0s image can be

diminished, and the shape of inclusions were maintained significantly when reconstructed

from EPR with structural information, as shown in Fig. 10b, d.

4 Conclusions

In this study, we have presented an image reconstruction algorithm using modified EPR

scheme incorporating with a priori structural information. The auxiliary variable b, which

is introduced to linearize the minimization problem in EPR, marks the location of dis-

continuities. That provides the rationale for us to modify the auxiliary variable during each

reconstruction step according to the a priori edge information obtained from the structural

image. Three varied scenarios are presented to verify the robustness of proposed algorithm

with respect to the accuracy and availability of a priori edge information. In the second

scenario the tumor can still be characterized even though it is not available and shown in

the structural image; further, in scenario 3, the proposed scheme shows its robustness, not

affected by the inaccuracy and incorrectness of edge information. These cases demonstrate

that the incorporated a priori edge information further enable improving the DOI image

reconstruction. Besides, the reconstruction using noisy data sets shows its merits in the real

situations as the measured data are usually corrupted by the noise.
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